Faber and Newton Polynomial Integrators for Open - System Density Matrix Propagation

نویسندگان

  • LORENZO PESCE
  • PETER SAALFRANK
چکیده

Two polynomial expansions of the time-evolution superoperator to directly integrate Markovian Liouville-von Neumann (LvN) equations for quantum open systems, namely the Newton interpolation and the Faber approximation, are presented and critically compared. Details on the numerical implementation including error control, and on the performance of either method are given. In a rst physical application, a damped harmonic oscillator is considered. Then, the Faber approximation is applied to compute a condensed phase absorption spectrum, for which a semi{analytical expression is derived. Finally, even more general applications are discussed. In all applications considered here it is found that both the Newton and Faber integrators are fast, general, stable, and accurate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations

A function is said to be bi-univalent on the open unit disk D if both the function and its inverse are univalent in D. Not much is known about the behavior of the classes of bi-univalent functions let alone about their coefficients. In this paper we use the Faber polynomial expansions to find coefficient estimates for four well-known classes of bi-univalent functions which are defined by subord...

متن کامل

A New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation

In this paper, we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted methods, symplectic integrators and efficient integration of the Schr¨odinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant lit...

متن کامل

An infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step

An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...

متن کامل

Numerical solution for the risk of transmission of some novel coronavirus (2019-nCov) models by the Newton-Taylor polynomial solutions

In this paper we consider two type of mathematical models for the novel coronavirus (2019-nCov), which are in the form of a nonlinear differential equations system. In the first model the contact rate, , and transition rate of  symptomatic infected indeviduals to the quarantined infected class, , are constant. And in the second model these quantities are time dependent. These models are the...

متن کامل

On the Number of Places of Convergence for Newton’s Method over Number Fields

Let f be a polynomial of degree at least 2 with coefficients in a number field K, let x0 be a sufficiently general element of K, and let α be a root of f . We give precise conditions under which Newton iteration, started at the point x0, converges v-adically to the root α for infinitely many places v of K. As a corollary we show that if f is irreducible over K of degree at least 3, then Newton ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998